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Abstract

In light of progressive legislative support and technological ad-
vancements, solar photovoltaic (PV) technology has emerged as a piv-
otal component of the global shift towards renewable energy sources
and now represents a substantial portion of new renewable capacity
additions worldwide. Efficient integration of solar power is challeng-
ing due to the intermittent nature of solar irradiance and calls for
precise and reliable prediction models, particularly for global horizon-
tal irradiance (GHI). This thesis investigates the reliability of deter-
ministic solar irradiance forecasts at 24-hour forecast horizons. The
measure-oriented approach and the Murphy-Winkler framework-based
distribution-oriented approach are both utilized to provide a nuanced
understanding of forecast quality, focusing on aspects such as calibra-
tion, resolution, and discrimination. This analysis specifically exam-
ines how forecasts perform under varying weather conditions, with the
particular emphasis falling on temperature and wind speed. Addition-
ally, a post-processing step involving a linear variance correction is
implemented to refine the results.
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1 Introduction
In recent decades, due to progressive laws and technological advancements,
the use of renewable energy sources has significantly increased worldwide.
One of the most extensively applied of these has been solar photovoltaic
(PV) technology. The introduction of novel materials and notable improve-
ments in cell efficiency have all contributed to the significant advancement of
PV technology. Additionally, advances in manufacturing techniques have led
to improvements in performance and decreased costs [3], [35]. The solar pho-
tovoltaic industry is growing quickly, and in 2023, solar PV alone accounted
for three-quarters of the renewable capacity additions around the world. As
a critical part of the transition to sustainable energy, this pattern highlights
how appealing and competitive solar photovoltaics are becoming [1]. Figure
1 shows solar PV global capacity and annual additions for 2012-2022.

Solar photovoltaics offers certain advantages over conventional fossil fuel-
based electricity sources. Due to economies of scale and rapid technological
advancements, solar PV is a proven technology that has become remarkably
cost-effective [31]. This has led to today, where more than half of new solar
PV plants offer cheaper power than existing fossil fuel facilities [1]. Solar PV
is anticipated to play a major role toward the Net Zero by 2050 ambition.
The nature of solar PV is modular and enables varying deployments. These
can range from small rooftop installations to large-scale plants. This makes
the technology very flexible, and, in combination with the continuous cost
reductions, solar PV is expected to be one of the key technologies in decar-
bonizing the global energy system [31]. Currently, there are notable gaps
among various renewable technologies, and while a combination of many is
required to meet the Net Zero targets, annual additions of solar PV appear
to follow a more promising trajectory compared to wind, hydropower, and
other renewables [1].

This surge in reliance on solar energy brings to the forefront the im-
portance of accurate solar irradiance forecasting.The integration of solar
power into the power grid presents a challenge because of its intermittent na-
ture, necessitating reliable forecasting methods. Forecasting methods encom-
pass a range of approaches, including data-driven approaches,image-based
approaches, numerical weather prediction (NWP) models, and hybrid ap-
proaches. Each method’s suitability varies based on the forecast horizon
[17].

The emphasis on Global Horizontal Irradiance (GHI) (see Section 2.1
for a description of GHI) forecasting emerges as a critical aspect in solar
energy research. The increasing integration of solar power into electrical sys-
tems has led to a heightened need for precise and reliable prediction models,
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Figure 1: Solar PV Global Capacity and Annual Additions, 2012-2022 [30].

particularly for GHI. This form of irradiance forecasting has a prominent
role in various PV power prediction systems [29]. There isn’t much differ-
ence between GHI and other types of solar irradiance when it comes to the
methodology of forecasting them. However, GHI forecasts tend to be more
accurate because the variability of GHI tends to be less pronounced [38].

In the dynamic landscape of electricity markets, the precision of solar irra-
diance forecasts, directly influences the economic benefits for end users. The
penalties for deviations from scheduled production can vary considerably.
Thus, the ability to accurately predict solar power output a day in advance
becomes a vital economic strategy, where more accurate forecast models can
lead to substantial economic gains. However, the relationship between fore-
cast accuracy and market conditions is more nuanced than lower error rates
equating to higher economic returns, as market dynamics play a significant
role in the actual economic impact of forecast precision [4].

In recent times, significant progress in the field of solar forecasting has
only started to be made in the 2010s. In contrast, other areas of energy
forecasting, such as load forecasting, have been utilized for planning for more
than a century. Over the past decades, researchers and practitioners have
begun to pay more attention to short-term load forecasting as power firms
have focused on optimizing their operations. Load forecasters have had the
opportunity to experiment with numerous forecasting methods over the past
few decades [12]. A significant amount of effort has been devoted to the
development of models for solar irradiance or solar power generation. Some
of them can be found here ([13], [14], [28], [21], [18], [23], [8]). Now that solar
forecasting is at the forefront, one important issue has to do with the "myth
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of the best technique".
Hong and Fan [11] draw attention to this problem by pointing out that

although scientists have long searched for the most precise forecast, the quest
for a single, "best" method is inherently faulty. They examined a wide range
of methods used in load forecasting, including hybrid models and neural
networks. Although some hybrid methods were useful, the majority only
made a small difference. This pattern is representative of a larger trend
in energy forecasting, where the emphasis frequently switches to integrating
different approaches in the pursuit of developing better hybrid solutions.
Unfortunately, this often results in models that are hard to duplicate and
generalize, which hinders the development of useful forecasting applications
[11].

Forecast verification relates to the quality of a forecast. For a given
forecast, there are numerous different numerical scores that can be used to
calculate the relative forecast quality. Examples of such error metrics are
mean bias error (MBE), mean absolute error (MAE), and root mean square
error (RMSE) [10]. This measure-oriented approach has been widely used in
solar forecasting. An alternative to this measure-oriented approach was pro-
posed decades ago, where the joint distribution of forecasts and observations
can be used to examine the skillfulness of the forecasts. This distribution-
oriented approach was proposed by Murphy and Winkler [27]. It gained
significant popularity in the field of weather forecasting but has only very
recently been applied to the domain of solar irradiance forecasting, first with
the work of Yang and Perez [41] and subsequent works [20], [38], [39], [42].
The distribution-oriented approach goes beyond the fundamental aspects of
accuracy and skill and presents the problem as multi-dimensional. Factoring
the joint distribution into a marginal and a conditional distribution allows
us to explore more aspects of forecast quality like reliability, resolution, and
discrimination [25].

1.1 Thesis Objective

The objective of the thesis is to evaluate the quality of deterministic global
horizontal irradiance (GHI) forecasts at 24-hour horizons by comparing them
to actual weather conditions for a specific geographical location. Further-
more, the analysis includes how the quality of the forecasts is influenced by
climatic effects or weather variables such as temperature and wind speed. As
mentioned above, the quality of the forecast is expressed in different aspects,
like reliability, resolution, and discrimination.
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2 Background and Related Work
The forthcoming sections will provide an overview of fundamental concepts
around solar irradiance and the methods used for the evaluation of solar fore-
casts. Section 2.1 introduces the core concepts of solar irradiance, including
its primary components and their roles in solar energy systems. Following
this, Section 2.2 contrasts the methodologies and implications of determinis-
tic forecasts with the broader scope of probabilistic approaches, highlighting
the need to account for uncertainties in forecasts. Finally, Section 2.3 outlines
the assessment of solar irradiance forecasting accuracy through traditional
metrics like RMSE, MAE, and MBE, focusing on some of their strengths and
limitations in capturing forecast quality. It further expands into a short intro-
duction of the distribution-oriented approach following the Murphy-Winkler
framework, which evaluates forecasts beyond basic error measures and offers
a more comprehensive perspective on the effectiveness of forecasts.

2.1 Solar irradiance fundamentals

Extraterrestrial radiation (ETR) is the total electromagnetic radiation that is
emitted from the sun [2]. As it travels towards the earth’s surface, it decreases
due to absorption, reflections, and re-emissions caused in the atmosphere and
is broken down into two components: diffuse horizontal irradiance (DHI)
and direct normal irradiance (DNI). DNI is the amount of solar radiation
that comes straight from the sun and strikes a surface perpendicular to the
sun’s rays. DHI, or diffuse horizontal irradiance, refers to the solar radiation
that has been scattered by the atmosphere and reaches the surface from all
directions. [22], [17]. Global horizontal irradiance (GHI) is the geometric
sum of these two components and represents the combined total of all solar
radiation striking a horizontal surface:

GHI = DHI + DNI · cos(θ), (1)

where θ is the solar zenith angle.
GHI is applicable in PV systems, and DNI is applicable in concentrated

solar power plants (CSPs) [15]. This is because most CSPs are only able
to effectively concentrate DNI, while photovoltaic systems can make use of
both DNI and diffuse horizontal irradiance [22]. Cloud coverage is the main
reason for the reduction in both types of solar irradiance. However, when
clouds are not present, aerosol concentration becomes the major factor in the
reduction of intensity. The reduction in DNI intensity can vary from 30% to
100% based on the exact aerosol concentration, while for GHI the reduction
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is considerably lower at about 10% [19], [22]. This causes forecasts of DNI to
be notably less accurate than GHI, even when methodologically there isn’t
any significant difference between the prediction of the two [38].

2.2 Probabilistic vs deterministic forecasts

Conventional solar power forecasting generates a single value or the condi-
tional expectation of solar power output at a future time point, known as a
"deterministic" or "point forecast." However, predictions involve uncertainty,
which probabilistic forecasting can address, considering time and space di-
mensions [9]. Probabilistic forecasts can be presented as probability distribu-
tions, quantiles, or intervals, while point forecasts, or single-valued forecasts,
offer summarized statistics, mainly expected values over different periods. In
weather forecasting, it is well known that forecasts span three-dimensional
space, time, and probability [12]. Probabilistic forecasts provide valuable
information on forecast uncertainty, essential for communicating events with
potential significant losses. However, understanding probabilistic forecasts
can be more challenging than single-value point forecasts. Some users prefer
clear, definitive statements rather than making optimal decisions themselves.
In reality, this can lead to probabilistic forecasts being used to shift the re-
sponsibility for decision-making from the forecasting community to the user
community [7].

2.3 Evaluation of point forecasts

Here we introduce the measure-oriented approach for verification of solar
irradiance forecasts using metrics like RMSE, MAE, and MBE to assess ac-
curacy and bias. We give some overview of the implications of these metrics
in representing error distributions and their limitations in fully capturing the
complexity of forecast accuracy. And transition into a brief description of the
distribution-oriented approach, which utilizes the joint distribution of fore-
casts and observations to provide a deeper analysis of forecast skillfulness,
moving beyond traditional error metrics to consider the forecasts reliability,
resolution, and discrimination.

2.3.1 Measure-oriented approach

Verifying irradiance forecasts is much like verifying other meteorological vari-
ables, with slight differences that have to be taken into account. After gener-
ating a solar irradiance forecast using a specific method, its effectiveness can
be evaluated using a validation dataset comprising historical forecasts and
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observations. For point forecasts, the quality is commonly validated in the
literature using error metrics such as root mean square error (RMSE), mean
absolute error (MAE), and mean bias error (MBE) [9]. The RMSE provides
a global error measure throughout the entire forecasting period. It is given
by:

RMSE =

√√√√ 1

N

N∑
i=1

(Îi − Ii)2, (2)

where Îi is the predicted value, Ii is the observed value, and N is the total
number of observations. Because each error term is squared, the RMSE
metric effectively weights large errors more heavily than small errors, which
tends to penalize large forecast errors. Similar to the RMSE metric, the
MAE metric also measures global errors, but it does not penalize extreme
forecast events as severely. Better forecasts are indicated by smaller MAE
values. A limitation of the MAE metric is that a small number of large errors
can be easily overwhelmed by a large number of very small errors. This may
pose an issue for systems that are susceptible to extreme weather events. It
is given by:

MAE =
1

N

N∑
i=1

∣∣∣Îi − Ii

∣∣∣ , (3)

where Îi is the predicted value, Ii is the observed value, and N is the total
number of observations. The MBE metric aims to show the average forecast
bias. The mean bias error (MBE) is given by:

MBE =
1

N

N∑
i=1

(Îi − Ii), (4)

where Îi is the predicted value, Ii is the observed value, and N is the to-
tal number of observations [44], [17], [10]. The larger the MBE, the larger
the forecasting bias. A positive MBE indicates over-forecasting, whereas a
negative MBE indicates under-forecasting, assuming that the forecast er-
ror is equal to the forecast minus the actual power generation. The entire
range of forecast errors is not well indicated by MBE. For instance, multiple
significantly distinct error distributions, some of which might be more ad-
vantageous than others, could be represented by the same MBE value. This
is, however, not a limitation of MBE specifically. Most forecasting metrics
are unbiased only if the underlying error distribution is Gaussian [44].

It has been established that no single metric stands paramount when it
comes to assessing the quality of a forecast. A whole array of metrics can
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Figure 2: Examples of two different methods giving the same score of RMSE
on the same day but with different behavior [34].

be used together to verify various aspects in a more intricate manner. While
using a comprehensive range of metrics might lead to some of them having
overlapping elements in terms of what they measure, they all can be a part
of a suite that collectively offers a robust toolkit for the assessment of solar
forecasting [44]. Nevertheless, these metrics have the limitation of underde-
termination. Even when many of these metrics are used in combination, it
is simple to confirm that they do not describe unique error characteristics.
In actuality, these metrics can yield identical values for a wide variety of
combinations of error characteristics [33]. This means that forecasts with
exactly the same error terms can have vastly different distributions. Figure
2 serves as an illustration of how two sets of quite disparate forecasts can
have the same error. These measures omit additional information about the
forecast errors that may be of significant importance since they are unable
to distinguish between two distributions with the same mean and variance
but differing skewness and kurtosis values [44].

2.3.2 Distribution-oriented approach

An alternative to this measure-oriented approach has been proposed decades
ago by Murphy and Winkler [27], where the joint distribution of forecast
and observation can be used to examine the skillfulness of the forecasts.
Determining the overall quantity of information a forecaster has access to
during verification is helpful, as forecast quality analysis is influenced by the
data contained in forecast-observation pairings. A forecaster is no longer
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constrained by the collection of summary statistics by defining all available
data. Put another way, the joint distribution of forecast and observation
can be used to examine the forecasts’ skillfulness if the temporal sequence
of forecast-observation pairings is not of concern because the data included
is time-independent [38]. The use of the join distribution to evaluate the
quality of different forecasts has been popular, especially in meteorology [41].
Among the different methods to describe the joint distribution, Murphy and
Winkler’s forecast-verification framework is arguably the most general, as it
applies to both deterministic and probabilistic forecasts [27]. It has gained
significant popularity in the field of weather forecasting but has only very
recently been applied to the domain of solar forecasting.

This framework facilitates easier access to the information within the
joint distribution by decomposing the mean square error (MSE), which is es-
sentially the squared RMSE [41]. Enhanced by Bayes’ theorem, the Murphy-
Winkler framework represents the joint distribution as the product of marginal
and conditional distributions, making the embedded information more ac-
cessible [38]. These decomposed metrics evaluate observation-forecast pairs
from various aspects that define good forecasts, such as reliability, resolu-
tion, and discrimination, which can be easily defined, quantified, and most
importantly, interpreted in a systematic way. For a more detailed overview
of those aspects and the Murphy-Winkler framework in general, see Sections
3.1 and 3.2.

3 Methodology of forecast quality evaluation
This section introduces the general problem of the evaluation of forecast data
and outlines our method, which combines measure-oriented and distribution-
oriented approaches to comprehensively analyze forecast quality. The section
underscores the synergy between visual and quantitative analysis, emphasiz-
ing how distribution-oriented insights are not an alternative but an enhance-
ment to the traditional metrics-based approach. In Section 3.2, the focus
shifts to detailing how MSE can be decomposed to further elucidate distinct
aspects of forecast accuracy based on the bias-variance decomposition, the
calibration-refinement, and likelihood-base rate factorizations. This detailed
examination enables a deeper understanding of how the Murphy-Winkler
framework works to describe forecast performance under various conditions,
enhancing the overall assessment process.
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3.1 General Approach

The evaluation of the forecast data will feature both the measure-oriented and
the distribution-oriented approach. This is because these two approaches are,
in actuality, complementary to each other, and one is never enough to com-
pletely substitute the other. In fact, at the start of the analysis, we include a
forecast-observation scatter plot to check forecast quality. We note the dis-
tribution of the cloud points in relation to the identity line. In effect, what
we observed is exactly the joint distribution of forecasts and observations.
Subsequently, when error metrics like MBE, RMSE, NRMSE, and MSE are
calculated, they also represent the joint distribution [38]. Meaning that these
measures are just summaries of the joint distribution. Consequently, when
the measure-oriented approach employs a visual accuracy quantification or
one based on accuracy measures, the joint distribution is always present;
however, even more insight can be drawn from the distribution-oriented ap-
proach.

If the forecasts are f and the observations x, the joint distribution is
denoted by p(f, x) and consists of relative frequency occurrence of specific
combinations of forecast and observation values. Although the joint dis-
tribution of forecasts and observations contains all information relevant to
verification, the information is more accessible when the distribution is fac-
tored. Following the Bayes rule, any joint distribution can be factored into
a conditional and a marginal distribution in two ways. Thus, we obtain two
factorizations that reveal information that has been embedded into the joint
distribution and relates to particular aspects of verification. The first factor-
ization is denoted by the conditional distributions of the observations given
the forecasts p(x|f) and the marginal distribution of the forecasts p(f):

p(f, x) = p(x|f)p(f). (5)

The conditional distribution p(x|f) indicates how often different observations
have occurred when a particular forecast was given, or in other words, the
variability of the observations given a particular forecast. If a specific value
is forecasted multiple times by a model, there is no rationale for expecting
the materialized observation to always be the same, as that would signify
that the forecast is completely deterministic. In reality, that is not the case,
and all the observations given a forecast value form a distribution p(x|f).
If, given a particular forecast value, the mean of those observations is equal
to the forecasted value, then the forecasting model would be considered per-
fectly calibrated. Or, in mathematical terms, E(x|f) = f . The marginal
distribution p(f) indicates how often different forecast values are used. If
the same forecast value is always predicted, the forecasting model is said to
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not be refined or sharp. Here, we see that both calibration and refinement
are distinct concepts that are both of interest for verification purposes. A
forecast can be perfectly calibrated but also have no refinement. Such a fore-
cast will always predict the mean of the observations. Complete refinement
is difficult to define for deterministic forecasts; however, p(f) has to equal
p(x) if we were to have a perfect forecast [26].

The second factorization involves the conditional distributions of the fore-
casts given the observations p(f |x) and the marginal distributions of the
observations p(x):

p(f, x) = p(f |x)p(x). (6)

The conditional distribution p(f |x) indicates how often different forecast val-
ues are produced before a specific value of x is observed, or, in other words,
the variability of the forecasts, given a particular observation. This aspect is
known as the likelihood, and p(f |x) indicates how well the forecast discrimi-
nates between different values of observations. If p(f |x) is zero for all values
x but one, the forecast is perfectly discriminatory. If p(f |x) is the same for all
values of x, the forecast is not at all discriminatory. In reality, we would like
to see predictions that have a high concentration around the specific x. The
best forecast provides us with likelihoods that are very different for different
observations, which would mean that it is very discriminatory and informa-
tive about x. The marginal distribution p(x) indicates how often different
values of x occur. It is known as the base rate. Since it is the only element
that does not involve f in any way, it is descriptive not of the forecasting
model but of the forecasting situation. Analyzing the distribution of obser-
vations gives insight into the situation that the forecasting model is trying
to predict. If the distribution is peaked, there is relatively little uncertainty,
and forecasting is easier. If the distribution is uniform, the uncertainty is
high.

Given that the two factorizations’ components clearly measure distinct
aspects of the forecasting system and/or forecasting circumstances, each of
the four components will be very valuable for verification.

3.2 Quantitative verification based on the Murphy-Winkler
framework

Because many of the error metrics, like MBE, MAE, and RMSE, are just
different ways of summarizing the joint distribution, an error metric like
MSE can be decomposed multiple ways into various terms, with each term
describing a distinct aspect of forecast quality. Three decompositions will
be considered: the bias-variance decomposition and decompositions based
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on the calibration-refinement and likelihood-base rate factorizations. Their
derivations are found in the appendix of [24]. The latter two decompositions
are directly connected to the Murphy-Winkler framework, while the first has
been widely popular in a broader statistical context for decades. The sections
below provide details on all three; for further information, they are based on
the following references: [27], [41], [26], [39], [42], [38].

3.2.1 Bias variance decomposition

The mean squared error (MSE) can be expressed as:

MSE = V (f) + V (x)− 2 cov(f, x) + [E(f)− E(x)]2. (7)

Here V (f) and V (x) describe the variance of the predictions and observa-
tions and are summaries of the marginal distributions. The covariance is a
measure of the linear relationship between the forecasts and observations,
which is termed the association. The last term [E(f)−E(x)]2 is the squared
unconditional bias, or MBE2. None of the terms here feature the conditional
distribution of forecasts and observations on their own, so for an interpre-
tation of it, we turn to the calibration-refinement and likelihood-base rate
MSE decompositions.

3.2.2 Calibration-refinement based MSE decomposition

The mean squared error (MSE) can additionally be expressed as:

MSE = V (x) + Ef [f − E(x|f)]2 − Ef [E(x|f)− E(x)]2 . (8)

Here Ef denotes the expectation with respect to the marginal distribution
p(f) , and E(x|f) is the conditional expectation of x on f . Ef [f − E(x|f)]2
can be calculated by taking the mean of [f − E(x|f)]2 which is obtained
by evaluating the mean of the conditional distribution E(x|f) for each given
value of f . The other terms of both decompositions are calculated in a similar
manner.

In Eq. (8), the first term is the variance of the observations, which is a
quantification of the marginal distribution of observations, also known as the
base rate or uncertainty. The second term Ef [f − E(x|f)]2 relates to cali-
bration or reliability. It describes the degree of correspondence between the
mean observation given a particular forecast and the forecast associated with
that observation. The third term Ef [E(x|f)−E(x)]2 relates to the difference
between the conditional expectations and the marginal expectation. This is
known as the resolution of a forecast, and the negative sign means that larger
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values are preferred. This is because if E(x|f) = E(x) is being approached,
different forecasts would be followed by very similar observations, and the
forecast would have very little meaning.

3.2.3 Likelihood-base rate based MSE decomposition

The mean squared error (MSE) can be also expressed as:

MSE = V (f) + Ex [x− E(f |x)]2 − Ex [E(f |x)− E(f)]2 . (9)

In Eq. (9), the term Ex[(x−E(f |x)]2 relates to the degree of correspondence
between the mean forecast given a particular observation and the observa-
tion associated with that forecast. It is known as type 2 conditional bias and
should be minimized. It can be viewed as the weighted average of the errors
in the average forecast. The last term Ex[(E(f |x) − E(f)]2 is the weighted
square difference between the average forecast associated with each observa-
tion and the overall average of forecasts. Larger differences are preferred, as
the term measures the extent to which an average forecast associated with
an event differs from the average forecast; this is known as discrimination
and needs to be maximized.

4 Implementation and Results
In Section 4, we address the details around the implementation of the fore-
cast analysis, beginning with data collection, spatial and temporal matching
of data, followed by stratification based on the weather variables of tem-
perature and wind speed. Quantitative assessments using traditional error
metrics (MBE, RMSE, and MAE) evaluate the joint distribution, while visual
assessments expand that to examine both the marginal and the conditional
distributions of forecasts and observations. Quantitative analysis based on
the Murphy-Winkler factorizations follows to outline the more nuanced as-
pects of forecast quality like calibration, type 2 conditional bias, resolution,
and discrimination. A post-processing step in the form of a linear variance
correction scheme is implemented to address disparities in variance present
within the stratified data, providing a more balanced comparison across dif-
ferent weather states.

4.1 Data

Regardless of the purpose behind forecast verification, it always starts with
a matched set of observations and forecasts. This occurs both spatially and
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temporally. Two approaches are relevant in the context of spatial matching,
namely gridded observations and station observations. While they both have
certain advantages and disadvantages, their use mainly comes down to the
type of verification. Model-oriented verification works best with gridded
observations, while the specificity of point observations is relevant when the
accuracy for a particular location is of interest [6]. Our analysis focuses on
the evaluation of point forecasts for a single location.

The forecast data consists of global horizontal irradiance (GHI) values
at 15-minute resolution for several days in the future. The historical ob-
servation data is from GeoSphere Austria, where the Messstationen Zehn-
minutendaten v2 (ZEHNMIN) [5] dataset contains station data at 10-minute
resolution, with the majority of the measurement data being quality tested
and accompanied by quality flags.

When temporally matching solar observation and forecast data, it is im-
portant to keep in mind the bell-shaped diurnal cycle of solar irradiance since
slight time series misalignment can discredit the validity of the verification
[42]. In solar forecasting, to achieve proper alignment, we often need to trans-
form a high resolution time series into a lower temporal resolution. This is
accomplished by time-oriented aggregation following one of three schemes,
namely, floor, ceiling, and round. Establishing the details around which of
these methods was used for a given observation dataset is important since
any mismatch will exaggerate the errors during verification [37].

In our case, for the temporal alignment of the observation and forecast
data, the 10- and 15-minute records will be aggregated and time stamped to
the nearest half an hour. Meaning that the timestamps that make up half
an hour will be averaged and aggregation will be done using the "ceiling"
operator, e.g., for the station data, 10-min data points between 11:00 and
11:30 are stamped with 11:30 after aggregation. We chose the ceiling method
since it matches how the 10-min resolution GHI data would be recorded in a
station where the timestamp of 11:00 is based on tracking GHI sensor data
between 10:50 and 11:00 and uses the latest time stamp. However, we do
not find documentation for how the GHI forecasts are exactly produced and
thus choose to maintain the same approach as with the observations. This
presents a potential limitation within this process. If we assume the inverse,
namely that the forecasts are aggregated using the floor method, a data
point labeled as 11:30 would cover data collected from 11:30 to 12:00. This
temporal alignment inherently shifts the bias, predisposing the forecasts to
overestimate the GHI when compared with the expected observation. Special
matching will be based on which station from the ZEHNMIN dataset is
closest to the location of the forecast.

It is important to note that the irradiance data records contain many
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values at or close to 0, specifically during the early morning and late af-
ternoon. This is one of the reasons why not every accuracy metric can be
used to evaluate the quality of solar forecasts [43]. Furthermore, there is no
consensus on whether or not to include overnight hours in the validation pro-
cess [38]. Since the forecasts are perfectly accurate at night, including those
hours would reduce the overall error. As a result, in our implementation,
the data collected at night is filtered out. A zenith-angle filter of less than
85 degrees is used to guarantee this. Additionally, this provision eliminates
low-sun conditions during the early morning and late afternoon, which lead
to inaccurate measurements and are often of insufficient irradiance for the
purpose of solar PV systems.

4.2 Stratification

After appropriately matched sets of observations and forecasts, stratification
can take place. It has the purpose of dividing the samples into relatively
homogeneous subsets and is key to answering specific questions regarding
forecast behavior. It is common to stratify based on lead time (12h, 24h,
48h, etc.), season, geographic area, as well as other dimensions relevant to
the specific parameter that is being verified [32]. After the decisions about
stratification have been made, the visual and quantitative evaluation of the
forecast can start.To fulfill the goal of the thesis regarding discernible pat-
terns of forecast quality based on weather variables, the sample data will be
stratified based on temperature and wind speed. These are features of the
forecast dataset. An alternative is to do the stratification based on the ob-
servation, meaning defining categories according to observation values. For
our implementation, the data will be split into four equally sized bins, from
lowest to highest temperature and wind speed.

4.3 Quantitative assessment of the joint distribution

Mean bias error (MBE), root mean square error (RMSE), and mean abso-
lute error (MEA) are widely used metrics not only in the solar forecasting
community [41], [20], [38], [42], but also in meteorology at large [39], [16],
[36]. In our case, those metrics are used as a specific way of summarizing
the joint distribution. Table 1 and Table 2 tabulate those metrics as well
as their normalized versions, nMBE, nRMSE, and nMAE. The normalized
versions are computed by dividing the metric with the mean of observation,
e.g., nMBE(f, x) = MBE(f,x)

E(x)
. This is done because most of the summary

measures are scale-dependent, meaning that if the underlying data samples
differ in scale, it is very hard to interpret the values of the error metrics.
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Normalization of error measures in the field of meteorology is rarely used;
however, in the subfield of solar forecasting, it is much more common. The
specific method of normalization by division by the mean of observations is
seen in the field of solar engineering [40].

Examining nRMSE and nMAE, we note a consistent decrease in the mag-
nitude of forecast error as we go towards higher temperature buckets. This
relation gets inverted when we look at the stratification by wind speed, where,
as we go towards higher and higher wind speeds, nRMSE and nMAE increase.
It is important to note that if we only looked at the non-normalized versions
of the metrics, this insight would be obscured for the temperature buckets.
However, for the wind speed buckets, the scale-dependent measures provide
us with generally the same insight. This might be the case due to wind speed
not strongly affecting the scale of the GHI, even when low wind conditions
tend to be better than high wind conditions for the accuracy of the forecast.

Additionally, we note that the relative decrease in nRMSE compared to
nMAE is greater when comparing the highest temperature bin to the others
and when comparing the lowest wind speed bin to the others. This suggests
that the relative frequency and/or size of large errors are the smallest in these
bins.

The faster decrease in nRMSE indicates that there are relatively larger
errors in the lower temperature bins and in the higher wind speed bins. As
temperature increases or wind speed decreases, these larger errors become
less frequent or less significant, leading to a more pronounced reduction in
nRMSE. While both nRMSE and nMAE are decreasing, indicating an overall
improvement in prediction accuracy, the fact that nRMSE decreases faster
implies that larger errors, which nRMSE is more sensitive to, are being re-
duced more significantly.

When looking at the MBE and nMBE, we see that, in general, there is
a slight bias towards overestimation. However, when looking at the different
values of MBE for the most accurate buckets based on the other metrics, we
see that the highest temperature bucket and the lowest wind speed bucket are
actually biased towards under-prediction. Further examination via scatter
plots might clarify this more.

4.4 Visual assessment the joint distribution

The scatterplot, as the fundamental instrument for exploratory examination
of paired data, is used here in Figure 3 to graphically represent the joint
distribution itself. Where the relative frequency of (f, x) pairs is qualitatively
expressed by the point density in a scatterplot of f versus x. Using 2D kernel
density contours is advantageous for a large number of points.
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Temp MBE nMBE RMSE nRMSE MAE nMAE

All 3.043418 1.051219 93.448303 32.277740 63.136697 27.355712
(-7.47 - 8.89) 2.962576 1.793277 67.096348 40.614077 48.831114 34.699949
(8.89 - 14.83) 6.674911 2.854373 87.632405 37.474001 62.467249 33.727853
(14.84 - 20.8) 4.864266 1.575032 106.190996 34.384271 71.674116 30.202132
(20.8 - 35.08) -2.328031 -0.517066 107.121563 23.792153 69.583012 28.917183

Table 1: General error metrics for different temperature bins.

Wind MBE nMBE RMSE nRMSE MAE nMAE

All 3.043418 1.051219 93.448303 32.277740 63.136697 27.355712
(0.42 - 2.0) -8.782939 -3.007534 73.386101 25.129541 52.096576 23.264058
(2.01 - 3.5) 5.875879 1.958722 98.719316 32.908040 65.748681 27.530056
(3.5 - 5.33) 9.334237 3.188756 100.988260 34.499547 66.327929 28.592532
(5.33 - 11.42) 5.753688 2.105180 97.993499 35.854206 68.380319 30.077139

Table 2: General error metrics for different wind speed bins.

When examining the most dense 2D contours in the majority of the plots,
most data points lie below the identity line, except for very low values of
GHI (<100). This generally indicates an underestimation. However, the
positive MBE for all bins (except the highest temperature and lowest wind
speed bins) would suggest overestimation, meaning that most data points
should lie above the identity line. A notable pattern emerges where, for
the early GHI range (0-350), we see a higher variability of errors towards
overestimation. This is represented by the more spread-out 2D kernel density
contours above the identity line compared to those below it. Furthermore, the
points outside the 2D contours, which can be classified as outliers, are more
frequent and larger above the identity line. Despite the majority of points
being clustered below the identity line, these outliers contribute to the bias
toward overestimation. Combined with the bias from the higher variability
in lower GHI values (0-350), this causes the MBE to report overestimation
even when the most dense contours of the scatter plots are almost always
consistently below the identity line.

The exceptions were again the plots with the highest temperature and
lowest wind speed, where MBE indicated underestimation in unison with
the majority of points being below the identity line. It is also interesting
to note that the scatter plot of the highest temperature bin was the only
one without the pattern of higher variability of errors above the identity
line for the early GHI range (0-350). Even then, the outliers were generally
biased toward overestimation. For the scatter plot representing the bin of
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Figure 3: Scatter plots for all data, temperature and wind speed bins. Iden-
tity line is in red, 2D density contours are in blue.

lowest wind speed, we can see the same pattern for the early GHI range (0-
350); however, the overwhelming majority of points below the identity line
prevented the MBE from reversing its sign.

4.5 Marginal distribution Analysis

As mentioned before, if a forecast was to be perfect, the marginal distri-
butions of p(x) and p(f) would be exactly the same. However, the inverse
does not hold true. Meaning that if a data sample of forecasts and observa-
tions has exactly matching marginal distributions, it is not implied that the
forecast is perfect and only that the distribution of predictions is consistent
with observed climatology. Based on this, the analysis is most meaningful in
the direction of a mismatch between the two distributions, since this is an
obvious sign of a forecast that could be better.

Figure 4 represents the estimates of the continuous marginal distributions
of forecasts and observations. This is why we have some plot area below zero
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when there are no observations or forecasts for negative GHI values. Here,
the WD on the top right is the Wasserstein metric, also known as the Earth
Mover’s Distance. It measures the distance between two probability distri-
butions, or more accurately, the effort required to transform one distribution
into the other. Thus, the lower its value, the more the two distributions are
alike.

Examining the plots, we generally see that there seems to be a slight un-
derpopulation for the lower GHI values (<200) and a slight overpopulation
for the mid-range. However, all in all, there isn’t any bin with overly sharp
marginal distributions, and it appears the forecast gives appropriately differ-
ent forecast values with no real shrinkage in range. Interestingly, the bin with
the highest temperature that would be considered most accurate appears to
have the most dissimilar marginal distributions of p(x) and p(f). It appears
that the first peak with low GHI values is underpopulated, while the peak
for high irradiance between around 500 and 700 GHI is overpopulated.

Complementing this visual analysis, we quantitatively verify the marginal
distributions using the widely recognized bias-variance decomposition of the
mean squared error (MSE):

MSE = V (f) + V (x)− 2 cov(f, x) + [E(f)− E(x)]2. (10)

Based on the above, it’s clear that MBE can be expressed in terms of the
means and variances of the marginal distributions, p(x) and p(f), and the
covariance of the joint distribution, p(f, x). The covariance can also be writ-
ten as

√
V (f)V (x)ρ(f, x), where ρ(f, x) is the correlation between f and x.

Correlation measures the linear relationship between two variables, i.e., here
it measures the association of observations with forecasts. The calculation
of each term is tabulated in Table 3 for temperature and Table 4 for wind
speed.

Examining the variances, we see that V (x) is larger than V (f) for all bins
of both temperature and wind speed, which indicates slight under-dispersion,
where the variability of the irradiance is not fully captured by the forecasts.
The linear relationship between f and x reveals that for situations with little
to no wind, the association of observations with forecasts is stronger than for
situations with more wind; however, further increases in wind have much less
of an impact. For temperature, the correlation is highest in high-temperature
circumstances, with states of lower temperature slightly decreasing the asso-
ciation. It is worth noting that the bias term [E(f) − E(x)]) has minimal
contribution to the overall MSE value and is vastly overshadowed by the vari-
ances of f and x. This is quite common in state-of-the-art operational solar
forecasts, and a minimized bias term is to be expected since many models
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Figure 4: Marginal distributions of p(x) and p(f) and the Wasserstein metric.

implement a bias correction, e.g., model output statistics (MOS) [38]. This
correction transforms the third term, which is essentially the MBE squared,
into more of a baseline requirement than a metric for quality evaluation.

Temp MSE V (x) V (f) Correlation Bias2

All 8732.585 53268.157 46058.156 0.9146 9.262
(-7.47 - 8.89) 4501.920 19803.210 15310.078 0.8793 8.777
(8.89 - 14.83) 7679.438 34302.627 29240.461 0.8827 44.554
(14.84 - 20.8) 11276.528 56318.291 48533.337 0.8951 23.661
(20.8 - 35.08) 11475.029 57902.121 48395.830 0.8957 5.420

Table 3: Error terms based on bias-variance decomposition according to
temperature.

4.6 Visual analysis of the conditional distribution

Having analyzed the joint and marginal distributions of forecasts and obser-
vations, we turn to the conditional distribution for further insights. Gener-
ally, the information within the conditional distributions is not part of tradi-
tional forecast verification; however, it contains several distinguishing char-
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Wind MSE V (x) V (f) Correlation Bias2

All 8732.585 53268.157 46058.156 0.9146 9.262
(0.42 - 2.0) 5385.520 50147.283 42847.004 0.9458 77.140
(2.01 - 3.5) 9745.503 57037.423 50735.240 0.9115 34.526
(3.5 - 5.33) 10198.629 53813.055 46722.880 0.9017 87.128
(5.33 - 11.42) 9602.726 51687.939 43393.441 0.9028 33.105

Table 4: Error terms based on bias-variance decomposition according to wind
speed.

acteristics that relate to forecast quality. It is important to note that E(x|f)
represents the set of conditional distributions of the observations given the
forecast, and in turn, E(f |x) represents the set of conditional distributions
of the forecasts given the observation. Because we are dealing with sets of
distributions, the visual analysis of the conditional distribution of forecasts
and observations is not as straightforward as the marginal distribution.

Here, rideline plots are used to show the variability of observations given
a forecast and the variability of the forecast given observations for the whole
range of GHI. Every plot has multiple rows; each row represents 100 units of
GHI, and a kernel density estimation is done with a Gaussian kernel. Note
that variability is shown only in relation to the x-axis. Normally, we have
the x-axis for observations and the y-axis for forecasts. For the Figure 5
plots, that changes in regards to what is "given". For example, when we
have plotted "Observed GHI given forecasted GHI", since variability can
be expressed only on the x-axis, the y-axis is forecast GHI and the x-axis
is observations. Conversely, when plotting "Forecasted GHI given observed
GHI", the roles of the axes are reversed: the x-axis represents the forecasts
while the y-axis captures the observations, effectively flipping the standard
orientation.

It is desirable that the centroids of the conditional distributions lie on
the identity line. Recall that a forecast is perfectly calibrated if E(x|f) = f .
Furthermore, a forecast is discriminatory (type 2 conditional bias) if we see
predictions that have a high concentration around the specific x, E(f |x) ≈ x.
Calibration and type 2 conditional bias relate to the second terms in the CR
and LB factorizations, Ef [f − E(x|f)]2 and Ex[x − E(f |x)]2, and can be
examined visually using the conditional plots of Figure 5. The third terms
of the CR and LB factorizations are best interpreted quantitatively. They
relate to resolution and discrimination.
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Figure 5: Conditional distributions of p(x) and
p(f) showing the variability of x given f and
the variability of f given x. Black triangles
mark the values at which the centroids should
lie, peaks are marked by the yellow dots.

Examining the conditional plots of Figure 5 for the variability of observed
GHI given forecasted GHI, we note that generally the centroids lie close to
the expected value for almost all ranges of GHI. The exception to this are the
rows for forecasted GHI in ranges 100 to 200 and 200 to 300. This observation
of higher error rates towards overestimation for these early GHI ranges was
also part of the scatter plot analysis in Figure 3. However, beyond these spe-
cific instances, the observation that forecasts are quite well calibrated holds
consistent across different temperature and wind speed buckets. This indi-
cates a small type 1 conditional bias, suggesting that the forecasts are well
calibrated throughout the GHI range and for situations of both high and low
temperature and wind speeds. Looking at the specific differences between
buckets, for temperature, the highest temperature bucket seems most cali-
brated as it doesn’t feature the overestimation bias described prior. For wind
speed, the centroids tend to be positioned close to the expected value for all
buckets; however, it is notable that as wind increases, the density spreads
out further away from the peak of the distribution, indicating increased un-
certainty.

The conditional plots for variability of forecasted GHI given observed GHI
reveal a noticeable deviation from the identity line for all GHI ranges except
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0 to 100 that is consistent throughout different temperature and wind speed
buckets. It appears that as we go towards higher and higher GHI ranges,
the type 2 conditional bias worsens and the centroids of the distribution fall
further and further behind the expected value. This underestimation was
also visible in Figure 3, where the 2D contours showed most data points
to lie below the identity line, except for very low values of GHI (<100).
Comparison between the temperature buckets reveals that as we go towards
lower temperatures, this shift towards underestimation for higher GHI ranges
worsens. The difference between the wind speed buckets seems to stem not
from the worsening of the bias as we go towards higher wind speeds but from
an increase in uncertainty represented by the spread of the density away from
the peak and the ticker distribution tails.

The visual analysis of the conditional distribution is summarized in that
the type 1 conditional bias, Ef [f − E(x|f)]2, is relatively small, meaning
that the forecast is generally well calibrated. This is especially true when it
comes to states of high temperature or low wind. The same holds for type 2
conditional bias, Ex[x−E(f |x)]2, where the forecast was most discriminatory
for states with higher temperatures and lower wind speeds.

Temp MSE V (f) V (x) Ef [f − E(x|f)]2 Ef [E(x|f)− E(x)]
2

All Data 8732.585 46058.156 53268.157 147.812 44683.064
(-7.47 - 8.89) 4501.920 15310.078 19803.210 544.216 15863.848
(8.89 - 14.83) 7679.438 29240.461 34302.627 586.282 27236.869
(14.84 - 20.8) 11276.528 48533.337 56318.291 622.770 45636.606
(20.8 - 35.08) 11475.029 48395.830 57902.121 562.389 46923.952

Table 5: Error terms based on calibration-refinement factorization according
to temperature.

Wind MSE V (f) V (x) Ef [f − E(x|f)]2 Ef [E(x|f)− E(x)]
2

All Data 8732.585 46058.156 53268.157 147.812 44683.064
(0.42 - 2.0) 5385.520 42847.004 50147.283 491.126 45240.178
(2.01 - 3.5) 9745.503 50735.240 57037.423 829.646 48145.874
(3.5 - 5.33) 10198.629 46722.880 53813.055 620.317 44207.337
(5.33 - 11.42) 9602.726 43393.441 51687.939 544.188 42665.475

Table 6: Error terms based on calibration-refinement factorization according
to wind speed.
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4.7 Quantitative analysis of the conditional distribution

The quantitative summary based on the CR and LB factorizations allows us
to confirm the conclusions of the previous visual analysis. Both terms, Ef [f−
E(x|f)]2 and Ex[x−E(f |x)]2, however, feature the conditional distributions
of p(x|f) and p(f |x) in the form of the conditional means E(x|f) and E(f |x).
To calculate this, we employ kernel conditional density estimation (KCDE)
twice since both f and x take the place of the independent and dependent
variables, depending on the factorization used. For details on the KCDE
used in this context, see [41].The calculation of E(x|f) and E(f |x) for the
last terms of the factorizations is analogous.

The final aspects of forecast quality that we will examine are represented
by the third terms of the CR and LB factorization, Ef [E(x|f) − E(x)]2

and Ex[E(f |x) − E(f)]2, which relate to resolution and discrimination, re-
spectively. In the MSE decomposition, both terms have a negative sign,
indicating that larger differences are preferred. The resolution for both tem-
perature and wind speed is tabulated in Tables 5 and 6. A pattern emerges
for the temperature bins where, as we go towards higher temperature bins,
resolution significantly increases. Resolution relates to the conditional expec-
tations and the marginal expectation, E(x|f)− E(x). It is desirable for the
difference between these terms to be as large as possible, as it would mean
that based on the forecasts, the observations associated with them would be
quite different from what was expected unconditionally (marginally). The
values indicate that for states with lower temperatures, the forecast has sig-
nificantly less resolution; for wind speed, generally, circumstances with low
to moderate wind speed seem to offer better resolution; however, this ef-
fect is much less pronounced. Similar is the situation with the third term
of the LB factorization: discrimination. It denotes how different forecasts
are associated with different observation values Ex[E(f |x)− E(f)]2. Larger
values are best, as it would mean that based on the observations, the fore-
casts associated with them would be quite different from what was expected
unconditionally (marginally). The discrimination for both temperature and
wind speed is listed in Tables 7 and 8. Here we again note a significant in-
crease as we go towards higher temperature buckets. States with lower to
moderate wind speeds appear to be only marginally better than states with
higher wind speeds.

At first glance, we see these very high resolution and discrimination val-
ues as we go towards high temperatures; however, this doesn’t mean that the
forecast itself exhibits this severely reduced resolution and discrimination for
low temperatures. This is due to the fact that variances differ substantially
between the different temperature buckets. These two qualities are much
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more similar for wind speed across the bins, where differences in variance are
notably slighter. In fact, if we were to verify our visual analysis of the con-
ditional distribution, recall that we concluded that the highest temperature
bin had the least type 2 conditional bias. If we look at Table 7, it appears
that the summary measure contradicts our observations, where the highest
temperature bin has the most type 2 error. This issue would self-evidently
limit the interpretation of the summary metrics relating to different forecast
quality measures. To attempt to overcome that, the next section describes
a post-processing step that is based on a linear correction of the variances
within the temperature and wind speed buckets.

Temp MSE V (f) V (x) Ex[x− E(f |x)]2 Ex[E(f |x)− E(f)]2

All Data 8732.585 46058.156 53268.157 1455.785 38799.998
(-7.47 - 8.89) 4501.920 15310.078 19803.210 1363.341 12193.276
(8.89 - 14.83) 7679.438 29240.461 34302.627 1640.933 23240.020
(14.84 - 20.8) 11276.528 48533.337 56318.291 2431.183 39742.300
(20.8 - 35.08) 11475.029 48395.830 57902.121 2557.297 39524.728

Table 7: Error terms based on likelihood-base rate factorization according to
temperature.

Wind MSE V (f) V (x) Ex[x− E(f |x)]2 Ex[E(f |x)− E(f)]2

All Data 8732.585 46058.156 53268.157 1455.785 38799.998
(0.42 - 2.0) 5385.520 42847.004 50147.283 1223.085 38691.525
(2.01 - 3.5) 9745.503 50735.240 57037.423 1780.392 42691.145
(3.5 - 5.33) 10198.629 46722.880 53813.055 2291.694 38925.561
(5.33 - 11.42) 9602.726 43393.441 51687.939 2281.822 36061.746

Table 8: Error terms based on likelihood-base rate factorization according to
wind speed.

4.8 Linear variance correction

In the previous sections, the analysis was based on four equally sized bins for
both wind speed and temperature; however, the variance within those buckets
can be quite different, especially for the latter, where the highest temperature
bucket has close to three times the variance of the lowest temperature bucket.
Because of these reasons, we review a post-processing strategy from [42]
where the variance of the forecasts is corrected and the MBE is eliminated.
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Corrected forecasts are represented by the linear equation:

f ∗ = af + b, (11)

where a is the slope that adjusts the scale, and b is the intercept that aligns
the mean with observed values. Using the principles of statistical expectation
and variance, the mean and variance of the corrected forecasts f ∗ are derived
as

E(f ∗) = aE(f) + b, (12)
V (f ∗) = a2V (f), (13)

respectively. Since in this correction scheme we also correct for the MBE to
be zero:

MBE(f ∗, x) = E(f ∗)− E(x) = aE(f) + b− E(x), (14)

b would have to equal to E(x)−aE(f). Based on the requirements of V (f ∗) =

V (x) and V (f ∗) = a2V (f) it is derived that a =
√

V (x)
V (f)

. Substituting for a

and b in Eq. 11 gives us the desired linear correction:

f ∗ =

√
V (x)

V (f)
(f − E(f)) + E(x). (15)

We have to alter the implementation of the approach above since we are
not so interested in dealing with correcting the variance of the forecast in
regards to observations but rather in equal variance correction of the obser-
vation and forecast variances across the stratified buckets. Below, we will
only outline the forecast correction, as the observation correction is analo-
gous.

The correction scheme follows the same linear equation from Eq. 11. The
requirements here are that the variance of the bucket V (f ∗) would be equal
to the variance across all data V (fall). Based on Eq. 13, the slope that
adjusts the scale is

√
V (fall)
V (f)

. For the intercept b, we want to maintain the
mean of the buckets the same, since otherwise we would lose information in
regards to the interpretation of the second and third terms of the CB and
LB factorizations. To fulfill this, we need E(f ∗) = E(f), following the mean
of the corrected forecasts:

E(f ∗) = aE(f) + b, (16)
E(f) = aE(f) + b, (17)
b = E(f)− aE(f). (18)
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Substituting for a and b in Eq. 11 gives us the desired linear correction:

f ∗ =

√
V (fall)

V (f)
(f − E(f)) + E(f). (19)

The results of the correction are listed in Tables 9 and 10. It is clear
that after equating the variance within bins, the type 1 bias is no longer
similar between different temperature states. The higher the temperature,
the better calibrated the forecasts are; however, the resolution does not follow
this pattern. It appears similar across the temperature range and is actually
highest (by a small amount) in the lowest temperature circumstances. For
wind speed, the corrected terms are close to the original for calibration;
nevertheless, resolution makes the biggest difference where it is markedly
higher for low wind conditions.

Comparable are also the results from the second and third terms of the
likelihood-base rate factorization. Again, in contrast to the original results,
as temperature increases, the type 2 conditional bias decreases. Here we
further note an increase in discrimination for states with mid- to high tem-
peratures. This increase in discrimination is more significant for the lowest
wind bin, which is also the one with the least type 2 conditional bias. The
recalculated general error metrics are tabulated in Tables 11 and 12. The
mean bias error stays the same as our correction approach maintains the local
means within the bins. The other corrected error terms, however, differ from
the original and result in insight quite similar to the normalized metrics we
calculated for the quantitative assessment of the joint distribution. Overall,
the linear correction scheme employed aligned much more closely with the
visual analysis than the originally calculated terms.

Temp MSE Ef [f − E(x|f)]2 Ef [E(x|f)− E(x)]2 Ex[x− E(f |x)]2 Ex[E(f |x)− E(f)]2

(-7.47 - 8.89) 12225.57 2291.76 43491.57 3058.98 36910.73

(8.89 - 14.83) 11926.11 1071.42 42496.17 2512.11 36690.46

(14.84 - 20.8) 10667.83 580.11 43126.86 2263.53 37676.97

(20.8 - 35.08) 10596.17 550.85 43136.14 2090.86 37578.41

Table 9: Corrected error terms based on calibration-refinement and
likelihood-base rate factorization according to temperature.
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Wind MSE Ef [f − E(x|f)]2 Ef [E(x|f)− E(x)]2 Ex[x− E(f |x)]2 Ex[E(f |x)− E(f)]2

(0.42 - 2.0) 5702.31 517.99 48045.97 1237.71 41576.51

(2.01 - 3.5) 9064.22 714.31 44926.47 1820.54 38726.76

(3.5 - 5.33) 10085.67 605.17 43736.20 2292.46 38351.13

(5.33 - 11.42) 9920.15 605.51 43969.23 2158.96 38267.01

Table 10: Corrected error terms based on calibration-refinement and
likelihood-base rate factorization according to wind speed.

Temp MBE cMBE RMSE cRMSE MAE cMAE

(-7.47 - 8.89) 2.962576 2.962576 67.096348 110.569285 48.831114 78.780703
(8.89 - 14.83) 6.674911 6.674911 87.632405 109.206718 62.467249 77.811068
(14.84 - 20.8) 4.864266 4.864266 106.190996 103.285176 71.674116 69.658918
(20.8 - 35.08) -2.328031 -2.328031 107.121563 102.937688 69.583012 66.883102

Table 11: Original vs. corrected general error metrics for different tempera-
ture bins.

Wind MBE cMBE RMSE cRMSE MAE cMAE

(0.42 - 2.0) -8.782939 -8.782939 73.386101 75.513673 52.096576 53.403360
(2.01 - 3.5) 5.875879 5.875879 98.719316 95.206206 65.748681 63.933766
(3.5 - 5.33) 9.334237 9.334237 100.988260 100.427459 66.327929 66.021158
(5.33 - 11.42) 5.753688 5.753688 97.993499 99.599973 68.380319 69.322967

Table 12: Original vs. corrected general error metrics for different wind speed
bins.

5 Discussion and Conclusion
A central goal of this thesis was to conduct a comprehensive analysis of
forecast quality, focusing not only on general aspects but also going into
specific dimensions such as calibration, type 2 conditional bias, resolution,
as well as discrimination across varying weather conditions like tempera-
ture and wind speed. This was achieved by leveraging the synergy between
the traditional measure-oriented approach and the more recently introduced
distribution-oriented approach within the solar forecasting community. To
ensure completeness, both visual and quantitative assessments were consid-
ered. In light of this, because the numerical evaluation of the distribution-
oriented approach proves to be more burdensome, an alternative is to heavily
lean towards visual analysis since it is not only more straightforward but also
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allows for a detailed evaluation of the forecast properties without the need
for complex calculations or post-processing schemes.

The implementation initially focuses on the general error metrics of RMSE
and MAE, given that MBE is now commonly seen more as a standard require-
ment than a measure of quality. This shift is due to most modern forecasting
models incorporating some level of bias correction. Furthermore, compared
to MBE, the visual analysis in the form of scatter plots allows for a more de-
tailed analysis of the bias throughout the whole GHI range. When assessing
these general error metrics, it is crucial to highlight the significance of normal-
ization. Without normalization, RMSE and MAE are difficult to interpret
and can obscure valuable insights, as these metrics depend on the scale of the
data, which varies for different temperature and wind speed states. The vari-
ability of solar irradiance primarily depends on factors such as geographical
location, seasonality, and timescale. Even when data are matched based on
these factors, stratifying the data into four equal-sized bins for both temper-
ature and wind speed results in subsets with differing variances. This hinders
the interpretability of the terms derived from the calibration-refinement and
likelihood-based rate factorization. To address this issue, a post-processing
step involving a simple linear variance correction is implemented.

The results of the analysis revealed that the accuracy of weather forecasts
indeed varies under different weather conditions. Specifically, forecasts are
more accurate in higher-temperature environments compared to lower ones.
For wind speed, forecasts associated with lower wind speeds demonstrated
better performance. Moreover, the quality of the forecasts displayed distinct
nuances; higher temperatures were associated with better calibration and
notably lower type 2 conditional bias. In contrast, lower wind speeds were
found to have enhanced discrimination and higher resolution in the forecasts.
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